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Abstract

The Extended Kalman Filter is commonly used on mobile robots, as multiple sensors can
be combined to provide an accurate and reliable localization. However in the general
Kalman �lter framework relative measurements relating states at di�erent times can not
be used. Stochastic cloning is a state augmentation method that allows such measurements
to be integrated. The currently often used implicit form of stochastic cloning does not
allow the fusion of other measurements while a relative measurement is in progress. This
thesis advocates usage of the explicit form which allows the usage of relative sensors
combined with absolute sensors with measurements in arbitrary order and compares
results of explicit stochastic cloning with approximate methods.
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Zusammenfassung

Der erweiterte Kalman-Filter wird häu�g bei mobilen Robotern eingesetzt, da mehrere
Sensoren kombiniert werden können, um eine genaue und zuverlässige Lokalisierung zu
erhalten. Im allgemeinen Kalman-Filter Framework können jedoch relative Messungen,
die von Zuständen an unterschiedlichen Zeitpunkten abhängig sind, nicht verwendet
werden. Stochastic Cloning ist ein Zustandserweiterungsverfahren, das die Integration
solcher Messungen ermöglicht. Die derzeit häu�g verwendete implizite Form des Stochastic
Clonings erlaubt es nicht, andere Messungen zu fusionieren, während eine relative Messung
durchgeführt wird. Diese Arbeit befürwortet die Verwendung der expliziten Form, die
die Verwendung von relativen Sensoren in Kombination mit absoluten Sensoren mit
Messungen in beliebiger Reihenfolge ermöglicht. Die Ergebnisse des expliziten Stochastic
Clonings werden mit ungefähren Methoden verglichen.
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1 Introduction

The Extended Kalman Filter (EKF) is commonly used in mobile robot localization. Multiple
sensors (e.g. GNSS, IMU, Compass) can be combined to provide a more accurate and
reliable pose.

The Kalman �lter uses a mathematical model of the hidden state of the system and the
dependencies of the sensor measurements on this state to estimate the state of the system
using incoming measurements.

But in the general Kalman �lter framework, because of the Markovian assumption [9,
p. 51], measurements in the update step may only depend on the state at their respective
timesteps. This does not hold true for relative sensors (e.g. odometry, laser scan matches)
which measure a displacement between two timesteps.

One way to integrate these anyway is to convert them to a pseudo-velocity measurement
[8]. But this may require changes to the system model, i. e., the velocity must be included
in the state. Also it is not entirely accurate, because the converted velocity is an average
velocity but is handled like an instantaneous velocity.

Stochastic cloning (SC) as introduced by Roumeliotis et al. [8] allows such sensors to be
integrated into the state as relative measurements by cloning the state at the start of the
measurement into a larger augmented state vector and state covariance matrix. This way
the measurement model of the relative sensor has access to the states both at the start
and at the end of the measurement as well as the covariances relating the two. Using
this information the predicted measurement and its covariance can be calculated. The
augmented state covariance matrix is only stored implicitly.

This implicit form of stochastic cloning does not allow the fusion of other measurements
while a relative measurement is in progress.

This thesis uses a generalization which will be called explicit stochastic cloning. This form
allows the usage of relative sensors combined with absolute sensors with measurements
in arbitrary order.

Figure 1.1 shows examples of the dependencies between states xi and measurements zi
that can be handled by the di�erent methods.

The explicit SC-EKF is �rst demonstrated in a simulation using a simple system model for
better understandability and compared to the pseudo-velocity method.

Later this approach is used to integrate odometry measurements into an existing EKF based
localization �lter used on an autonomous vehicle. Previously only the forward velocity
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1 Introduction

x1x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6

General Kalman Filter
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Implicit Stochastic Cloning Kalman Filter
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z1 z2 z1,3 z4 z4,5 z3,6

Explicit Stochastic Cloning Kalman Filter

Figure 1.1: Comparison of the Bayesian networks handled by a general Kalman �lter and
the stochastic cloning Kalman �lters
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1.1 Previous / relevant work

could be included, as angular velocity is not part of the state vector, so an improvement
will be expected. The results obtained using the SC-EKF are compared with those of the
existing conventional EKF.

1.1 Previous / relevant work

The �rst mention of stochastic cloning was probably in [8]. This method is used to process
relative measurements in [5], [3]. The idea of explicit stochastic cloning is mentioned in
[7] as a possible extension of this method, however no work is known where this was
actually implemented.
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2 The Stochastic Cloning Kalman Filter

A Kalman �lter [4] estimates the probability distribution of the (unobservable) state of
a discrete linear system given a model of the system and measurements that linearly
depend on the state of the system. The probability distribution is modeled as a multivariate
Gaussian distribution whose mean and covariance is propagated by the �lter.

As a �lter, in contrast to a smoother, the estimate is calculated using information from
past measurements only. The Kalman �lter is the optimal linear unbiased �lter regarding
minimum error variance for a linear system disturbed by white noise [6, p. 7].

The extended Kalman �lter (EKF) is a generalization of the Kalman �lter for non-linear
systems. It essentially works by linearizing the system around the current estimated state
at every timestep and applying a Kalman �lter to the linearized system. The extended
Kalman �lter is in general non-optimal, but works well for nearly linear systems. It is
relatively e�cient even for systems with a state space of high dimensionality, in contrast
to, e. g., a particle �lter.

For robot localization the state to be estimated is the pose of the robot consisting of position
and orientation relative to some reference frame. Estimates of other quantities needed to
describe the system may be included in the state vector, e. g., the velocity of the robot,
sensor biases, etc.

For a more detailed introduction of the Kalman �lter see, e. g., [2]. A good overview of the
concepts is also given in [6, Ch. 1.3].

2.1 EKF Equations

This section summarizes the EKF equations similar to how they are given in [2].

The Kalman �lter is usually split into two alternating steps: The prediction step prop-
agates the state to the next timestep using the system model and the update step fuses
a measurement into the state (Fig. 2.1). It is valid to have multiple or no measurements
during one cycle. For the sake of a more readable notation we will however assume that
there is exactly one update for every prediction.

Figure 2.2 gives a high level overview of the extended Kalman �lter equations. The dots
and ellipses represent mean and covariance of a Gaussian distribution. The straight bold
arrows represent vectors and the thin curved arrows represent mappings. The system
model f is used to predict the state at timestep k using the state estimate at timestep

5



2 The Stochastic Cloning Kalman Filter

Prediction Update

State

State
Control

Measurement

Figure 2.1: Predict - Update cycle of the Kalman �lter

x̂k−1|k−1

x̂k |k−1

x̂k |k

f , Fk Kkyk

state space

ẑk

zk

yk

measurement space

h,Hk

Kk

Figure 2.2: Visualization of the Kalman �lter equations in state and measurement space

k − 1. The system model is linearized and the resulting Jacobian F is used to propagate the
covariance.

To apply a measurement �rst the estimated measurement ẑ is calculated from the state
using the measurement model h. Again the measurement model is linearized and the
Jacobian H is used to calculate the covariance of ẑ. Then the error of the estimated
measurement, called the residual y, is mapped back to the state space using the Kalman
gain K and applied to the state estimate.

2.1.1 Prediction

The system model is f given as

xk = f (xk−1, uk,wk) (2.1)

where xk−1 is the state at the previous timestep, uk is the control input and wk is the
system noise.

Estimation of the state at time k using the estimate at time k − 1 is performed using the
system model by assuming the noise to be zero (as it is zero-mean):
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2.1 EKF Equations

x̂k |k−1 = f (x̂k−1|k−1, uk, 0). (2.2)

For estimation of the state covariance the system model is linearized with respect to the
state and the noise.

Fk =
∂ f (x, u,w)
∂x

����
x=x̂k−1 |k−1,u=uk ,w=0

Gk =
∂ f (x, u,w)
∂w

����
x=x̂k−1 |k−1,u=uk ,w=0

f (x,w) ≈ f (x̂k−1|k−1, uk, 0) + Fk(x − x̂k−1|k−1) + Gkw

The covariance is then propagated using this linearization:

Pk |k−1 = FkPk−1|k−1FTk + GkQkGT
k . (2.3)

2.1.2 Update

The measurement model h is given as

zk = h(xk) + vk (2.4)

where xk is the current state and vk is the measurement noise.

The following steps are performed to integrate a measurement into the estimate: The
measurement model is used to calculate the residual yk :

yk = zk − h(x̂k |k−1). (2.5)

For the following equations the measurement model is linearized with respect to the state
and the noise.

Hk =
∂h(x)
∂x

����
x=x̂k |k−1

h(x) ≈ h(x̂k |k−1) + Hk(x − x̂k−1|k−1)

The optimal Kalman gain Kk is computed from the estimated covariance, the measurement
Jacobian and the measurement covariance:

Kk = Pk |k−1HT
k (HkPk |k−1HT

k + Rk)
−1. (2.6)

As the name suggests, the Kalman gain is used to weight the residual into the state estimate:

x̂k |k = x̂k |k−1 + Kkyk . (2.7)

7



2 The Stochastic Cloning Kalman Filter

The state covariance is propagated as following

Pk |k = (I − KkHk)Pk |k−1(I − KkHk)
T + KkRkKT

k . (2.8)

Equation 2.8 is called the Joseph form of the Kalman update.

For the optimal Kalman gain (2.6) it can be simpli�ed to

Pk |k = (I − KkHk)Pk |k−1. (2.9)

The Joseph form is however numerically more robust [11, p. 132] and can also be used
with a non-optimal Kalman gain. For a derivation of both forms see [10].

2.2 Implicit Stochastic Cloning

As shown in Equation 2.4, a measurement in the conventional EKF depends only on the
state at the current time. This is not the case for relative measurements, e. g., laser scan
matches which measure a pose displacement between two time steps. Roumeliotis at al.
[8] introduce stochastic cloning as a method to handle such measurements.

The state the relative measurement relates to is remembered by including it in an aug-
mented state:

x̆k =
(
x̂k,s
x̂k

)
(2.10)

where x̂k,s is the estimate of the cloned state and x̂k that of the current "evolving" state.
This augmented state is estimated by the �lter. Consequently the �lter also estimates the
covariance relating the two states. This way the measurement model has access to all
required quantities.

2.2.1 Cloning

Instead of storing the full state and covariance matrix, the cloned state and the covariance
of the cloned state are stored separately. Initially they are set equal to their evolving
counterparts. Additionally the accumulated state transfer matrix F , which relates the
cloned and the evolving state, is stored. It is initialized with the identity matrix.

2.2.2 Prediction

As only the evolving state shall be a�ected by the prediction, F̆ and Ğ are chosen as follows
[8]:

8



2.3 Explicit Stochastic Cloning

(
xs
xe

)
k |k−1

=

(
I 0
0 Fk

)
︸      ︷︷      ︸
=: F̆k

(
xs
xe

)
k−1|k−1

+

(
0

Gk

)
︸  ︷︷  ︸
=: Ğk

w. (2.11)

Substituting F̆k and Ğk into Eq. 2.3 results in

P̆k |k−1 =
(

Pk−1|k−1 Pk−1|k−1FTk
FkPk−1|k−1 FkPk−1|k−1FTk + GkQkGT

k

)
. (2.12)

Applying this equation form + 1 steps and substituting Fk+m · · · Fk+1Fk =: F results in

P̆k+m |k−1 =
(

Pk−1|k−1 Pk−1|k−1FT

FPk−1|k−1 Pk+m |k−1

)
. (2.13)

2.2.3 Update

Equation 2.13 can be used to obtain the full covariance matrix from the static and evolving
covariance matrices and the accumulated state transfer matrix. It can then be used to
execute the update using the conventional EKF equations.

The estimate of the cloned state and its covariances are only needed to update the evolving
state and are discarded once the relative measurement is done. This means only the
evolving part of the state and covariance need to be updated. By exploiting this fact the
update can be brought into a more speci�c form depending on the cloned covariance,
the evolving covariance and the accumulated state transfer matrix [8]. This way the full
covariance matrix does not have to be constructed.

However this method is only usable if no other updates need to be processed between
the cloning of a state and the update using this cloned state, i. e., if the relative sensor is
the only sensor or if the sensors are synchronized in a way that no update has to happen
while a relative measurement is in progress.

2.3 Explicit Stochastic Cloning

Being able to use only one sensor is quite limiting. In this thesis a more general form of
stochastic cloning is used where this limitation does not apply. Instead of splitting the
covariance into the form shown in Eq. 2.13 the full augmented state and covariance are
used in the general EKF equations.

This also allows more than one clone to be used at the same time. Arguably it is also more
understandable as the equations are the same as those of the regular EKF and not hidden
behind calculations speci�c to the case of exactly one relative sensor.
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2 The Stochastic Cloning Kalman Filter

x̂1|1 x̂1|1

x̂1|1

Cloning

x̂2|1

x̂1|1

Prediction

x̂2|2

x̂1|2

Absolute Update

ẑ2
z2

x̂3|2

x̂1|2

Prediction

x̂3|3

x̂1|3

Relative Update

ẑ1,3
z1,3

x̂3|3

Removal

x2 x3x1

x̆

xe

xs1

Figure 2.3: The steps of handling a relative measurement using stochastic cloning

The state the relative measurement relates to is cloned and included in a larger augmented
state. Consequently the cloned state, its covariance and the covariances relating the cloned
state to the other states are also continuously estimated by the �lter. The cloned state
is not a�ected by the predict step as it always represents the same time step but later
absolute measurements may change the estimate of the cloned state. Once the relative
measurement has been processed the clone is removed or replaced by a new clone. Figure
2.3 shows this sequence.

The state clones are also called static states xsi and the state that is changed by the
prediction step is called evolving state xe . The whole state vector containing state clones
and the evolving state is called the augmented state x̆.

2.3.1 Initialization

Initially the augmented state vector contains only the evolving state.

x̆0 = xe,0
P̆0 = Pee,0

(2.14)

2.3.2 Cloning

At the start of a relative measurement the current evolving state needs to be cloned to a
new static state.

A new clone of the evolving state is added to the estimated state vector. At this point the
new clone is equal to the evolving state and all covariances involving the new clone are

10



2.3 Explicit Stochastic Cloning

set as if it was the evolving state:

x̆ =
©«
xs1
...

xsn
xe

ª®®®®¬
P̆ =

©«
Ps1s1 · · · Ps1sn Ps1e
...
. . .

...
...

Psns1 · · · Psnsn Psne
Pes1 · · · Pesn Pee

ª®®®®¬
becomes

x̆ =

©«

xs1
...

xsn
xsn+1 = xe

xe

ª®®®®®®¬
P̆ =

©«

Ps1s1 · · · Ps1sn Ps1e Ps1e
...
. . .

...
...

...
Psns1 · · · Psnsn Psne Psne
Pes1 · · · Pesn Pee Pee

Pes1 · · · Pesn Pee Pee

ª®®®®®®¬
.

(2.15)

2.3.3 Prediction

As only the evolving state shall be a�ected by the prediction step, F̆ and Ğ are chosen as
follows [8]:

©«
xs1
...

xsn
xe

ª®®®®¬k |k−1
=

©«
I · · · 0 0
...
. . .

...
...

0 · · · I 0
0 · · · 0 Fk

ª®®®®¬︸              ︷︷              ︸
=: F̆k

©«
xs1
...

xsn
xe

ª®®®®¬k−1|k−1
+

©«
0
...
0

Gk

ª®®®®¬︸︷︷︸
=: Ğk

w. (2.16)

The covariance is then propagated correspondingly by substituting the augmented matrices
into Eq. 2.3:

P̆k |k−1 = F̆k P̆k−1|k−1F̆Tk + ĞkQ̆kĞT
k . (2.17)

2.3.4 Absolute Sensor Update

The measurement Jacobian for the update of the augmented state H̆ for a given Jacobian
H of an absolute sensor is

H̆ =
(
0 · · · 0 H

)
(2.18)

since the absolute measurement only depends on the evolving state. Using H̆ the regular
EKF update equations 2.6 to 2.8 can be used on the augmented state.

It is important to note that the absolute update a�ects not only the evolving state but also
the cloned static states. Directly after cloning a state the P̆ matrix is the same in all four
blocks concerning the cloned state, which leads to the Kalman gain being the same for
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2 The Stochastic Cloning Kalman Filter

the static and evolving part. This makes sense as directly after a clone the evolving and
the cloned state represent the same timestep and should thus be updated the same. After
some time the static and evolving states will be decorrelated by the prediction step and
absolute measurements will a�ect the evolving state more than the static state.

The handling of absolute updates is very similar to the handling of updates in a �xed point
smoother [1, p. 171].

2.3.5 Relative Sensor Update

When a relative sensor measurement is �nished it is applied to the state estimate. In
contrast to the absolute update the measurement model has access to the cloned state too.

z̆k = h(xsi ,k, xe,k, vk) (2.19)

The measurement model is linearized with respect to both the static and the evolving
state leading to the measurement Jacobians Hsi and He which are assembled into the full
measurement Jacobian H̆.

H̆ =
(
0 · · · 0 Hsi 0 · · · 0 He

)
(2.20)

Using z̆k and H̆ the regular EKF update equations can be applied.

At the end of the relative sensor update the cloned state is not needed anymore and can
be removed.

2.3.6 Clone removal

When a clone is not needed anymore it can be removed by removing the corresponding
static state from the state vector and removing all rows and columns concerning the static
state from the state covariance matrix. I.e., when removing clone i , xsi is removed from
the state vector and Psis1 through Psise and Ps1si through Psesi are removed from the state
covariance matrix.

12



3 2D Simulation

To demonstrate the SC-EKF in a simple and understandable environment where ground
truth is available, a 2D simulation was implemented. In this simulation the SC-EKF is
compared to a regular EKF which incorporates the relative measurements as velocities.

For simplicity and to allow fusion of relative measurements as velocities, a constant velocity
system model was chosen. The state vector thus looks like this:

x =
(
px py pθ︸       ︷︷       ︸

position

vx vy vθ︸       ︷︷       ︸
velocity

)T
. (3.1)

The position is given in world coordinates and the velocity is given in robot body coordi-
nates.

The length of one timestep τ is set to 1 s. The simulation runs for N = 500 timesteps.

The system model is de�ned as such:

f (x,w) =

©«

px + cos(pθ + vθT )vxT − sin(pθ + vθT )vyT +w0
py + sin(pθ + vθT )vxT + cos(pθ + vθT )vyT +w1

pθ + vθT +w2
vx
vy
vθ

ª®®®®®®®¬
. (3.2)

First the rotational velocity is applied to the orientation of the robot, then the linear
velocity is applied to the position.

For propagating the real state the velocities are set to

vx = 1
vy = 0

vθ =

{
sin(2π/N ), if k < N /2
− sin(2π/N ), otherwise

(3.3)

leading to an s-shaped trajectory. This input is not known to the �lters. The �lters are
however initialized with the correct position and velocity.

13



3 2D Simulation

The simulation contains two sensors. In the following paragraphs the measurement models
of these sensors are given. The measurement noise is modeled to be additive as de�ned in
Equation 2.4.

The �rst sensor measures the absolute value of θ (similar to a compass) every timestep
using the following measurement model:

h(x) =
(
θ
)

(3.4)

The second sensor measures the robot’s pose relative to an earlier timestep (similar to
laser scan matching) every 10th timestep using the following measurement model:

h(

(
xs
xe

)
) =

©«
cos(−pθ,s)(px,e − px,s) − sin(−pθ ,s)(py,e − py,s)
sin(−pθ ,s)(px,e − px,s) + cos(−pθ ,s)(py,e − py,s)

pθ ,e − pθ,s

ª®¬ (3.5)

For the conventional EKF the measurement is converted to a velocity and the following
measurement model is used for the update step:

h(x) =
(
vx vy vθ

)T
. (3.6)

The conversion can be done by separately converting each component to a velocity:(
vx vy vθ

)T
=

(
∆x ∆y ∆θ

)T
10τ . (3.7)

Likewise the variance of each component is converted by dividing it by (10τ )2:

Var(vx ) =
(
1
10τ

)2
Var(∆x)

Var(vy) =
(
1
10τ

)2
Var(∆y)

Var(vθ ) =
(
1
10τ

)2
Var(∆θ ).

(3.8)

For comparison a conversion is used which uses the knowledge that the robot does not
move sideways and approximates the driven distance as a straight line:

(
vx vy vθ

)T
=

(√
∆x2 + ∆y2 0 ∆θ

)T
10τ . (3.9)

This would of course not work for an omnidirectional robot that is able to move sideways.
Assuming the variances of ∆x and ∆y are the same they can be transformed as following:

Var(vx ) =
( √

2
10τ

)2
Var(∆x)

Var(vy) = 0

Var(vθ ) =
(
1
10τ

)2
Var(∆θ ).

(3.10)
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3.1 Implementation
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Figure 3.1: Exemplary localization results

3.1 Implementation

The �lter was implemented as an explicit stochastic cloning EKF as described in section 2.3.
The implementation was done in C++ using the Eigen linear algebra template library.
Compile time index calculations using templates allowed �exible composition of the
augmented state vector and covariance matrix without runtime overhead. This also made
it possible to easily add a second relative sensor.

The size of the state vector and covariance matrix is not changed at runtime. Instead of
adding and removing clones, space for one clone is reserved for every relative sensor.
Once a relative measurement is �nished the clone is immediately overwritten with a new
clone as all relative measurements start immediately after the previous one.
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3 2D Simulation
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Figure 3.2: Estimated variance and mean squared error in the xy-plane

3.2 Results

To assess the errors of the di�erent methods the results from 100 runs of the simulation
were used (Fig. 3.2). From these the mean squared error is calculated as

MSEk =
1
100

100∑
r=1

(p̂k,r − pk,r )
2
2 (3.11)

where again pk,r is the xy-position at timestep k in run r .

When using the direct conversion from relative pose (Eq. 3.7) to velocity the EKF shows a
large error. This is due to the fact that an average velocity is handled as an instantaneous
velocity. The curvature of the path leads to a non-zero velocity being measured in y
direction and the velocity in x direction being underestimated.

For a robot that can not move sideways this e�ect can be reduced by using the approxima-
tion shown in Equation 3.9. This however still slightly underestimates the x velocity.

The SC-EKF has a much lower error which shows that it models the actual system more
closely. Its estimated variance also re�ects the real error more accurately.
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4 3D Filter

To evaluate the performance in a realistic setting stochastic cloning was used to incorporate
odometric information into an existing EKF used on an autonomous vehicle. Previously
only the pseudo-forward-velocity of the odometry was used.

4.1 The Vehicle

The vehicle (Fig. 4.1) is equipped with the following sensors: An XSens MTi-G-700 IMU and
GNSS combo, providing accelerations and turning rates at 100 Hz and GNSS measurements
at 4 Hz. The wheels are equipped with encoders from which a relative position is calculated
every 10 Hz. Lastly a 3D laser scanner is mounted on top of the vehicle, which is however
not used for localization in this thesis.

4.2 Filter Setup

The localization �lter used on the vehicle is a Closed Loop Error State Space Extended
Kalman Filter. This means the �lter does not estimate the state directly but instead
estimates the error of the prediction (error state space) and then subtracts this error from
the state (closed loop) (Figure 4.2). The error vector can be expressed di�erently from the
state vector. This localization �lter expresses the orientation as a quaternion in the state
vector but as roll pitch yaw in the error vector. This makes the measurement matrices
easier to build since the rotation reference axes are the same as the position and velocity
reference axes. As the rotation deltas in the error are always close to zero (since it is a
closed loop �lter) discontinuities in the Euler representation are not a problem.

Instead of a vehicle speci�c system model the IMU is used for prediction using a strapdown
algorithm. This allows the �lter to be used on many di�erent robots since most robots
have an IMU and the only thing that needs to be adapted to the speci�c robot are the
variances. The strapdown algorithm is explained in [11, p. 45].

4.2.1 EKF

This section explains the existing EKF.
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4 3D Filter

Figure 4.1: The Vehicle

Prediction Correction

State

Error−StateIMU

GNSS, Odometry

Figure 4.2: Schema of a closed loop error state space Kalman �lter
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4.2 Filter Setup

State variables and measurements are expressed in the following coordinate systems as
de�ned by [11, p. 28]:

• body - Fixed to the vehicle. The x axis points forward, the z axis points down.

• navigation - The origin coincides with the body frame. The x axis points north, the
y axis points east and the z axis points down (NED).

• earth - Centered in and �xed to the earth ellipsoid. The x axis points to the in-
tersection of the zero meridian and the equator. The z axis points to the north
pole.

Turning rates are not included in the state and can not be added without changes to the
system model. For this reason the conventional EKF only uses the pseudo-forward-velocity
of the odometry. This is an advantage of the SC-EKF which can also use the change in yaw
measured by the odometry since it incorporates them as a relative measurement between
two orientations.

The state vector looks like this:

x =
(
qn
b

vn
eb

LLA ba bω so
)T
. (4.1)

The entries are:

• Orientation of the body frame in the navigation frame as a quaternion

• Velocity of the body frame relative to the earth frame expressed in the navigation
frame

• Latitude, Longitude, Altitude (LLA)

• Biases for IMU accelerations and turning rates

• Scale factor of the odometry

The Error vector is very similar, with the di�erence that the orientation error is expressed
in Euler angles instead of a quaternion and the position error is expressed in Cartesian
instead of geodetic coordinates.

e =
(
∆rpyn

b
∆vn

eb
∆pn

b
∆ba ∆bω ∆so

)T (4.2)

The measurement vector of the odometry contains only the forward velocity of the vehicle:

z =
(
(v̄b

eb
)x

)
. (4.3)

It is fused into the state using the following measurement model:

h(x) =
(
Cb
nvneb

)
x
so . (4.4)
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4 3D Filter

The model converts the estimated velocity to body coordinates and applies the estimated
odometry scale factor.

From this model the following measurement Jacobian was derived:

H =
(
(Cb

n)x [vneb]×so (C
b
n)xso 0 0 0 (Cb

nvn
eb
)x

)
. (4.5)

Note that while the function h takes a state vector as an argument, the matrix H is de�ned
in the error space.

4.2.2 SC-EKF

For the SC-EKF the state vector and covariance matrix are doubled in size to contain static
and evolving state and their covariances. While this of course increases computational
cost signi�cantly, the �lter is still able to run multiple times faster than real time.

Also an additional scale factor and bias is introduced into the state for the angular part of
the odometry.

So the non-augmented state and error vectors of the SC-EKF look like this:

x =
(
qn
b

vn
eb

lat lon down ba bω solin soang boang

)T (4.6)

e =
(
∆rpyn

b
∆vn

eb
∆pn

b
∆ba ∆bω ∆solin ∆soang ∆boang

)T
. (4.7)

The measurement vector of the relative odometry contains the 2D position and orientation
of the evolved body frame relative to the static body frame:

z =

(
(p̄bst

bev
)xy

(q̄bst
bev
)yaw

)
. (4.8)

The following measurement model is used to predict the relative measurement from the
state:

h

( (
xst
xev

) )
=

(
(Cn

b
∆pn)xysol in

(qn
b
∗

st
qn
bev
)yawsoanд + boanд

)
(4.9)

where ∆pn is the di�erence between the evolving and static geodetic coordinates converted
to a Cartesian o�set in meters expressed in the navigation frame.

4.3 Results

Since no ground truth is available for the recorded data no quantitative statements can be
made about the localization results. Instead some qualitative statements are made with
regard to the resulting poses, maps generated from these poses and the robustness against
sensor failure.
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Figure 4.3: Comparison of localization results with an overview on the left and a detailed
view on the right.

4.3.1 Comparison of resulting poses

Figure 4.3 shows the poses resulting from the SC-EKF and the original EKF. It can be seen
that the SC-EKF produces straighter paths while still reaching the original location after
closing the circle. It can be seen that local accuracy can be improved without loss of global
accuracy.

4.3.2 Comparison of maps generated using (SC-)EKF

To make a bit more reliable statements about the local accuracy of the localization poses
grid maps were generated using a horizontal 2D cross section from the 3D laser scanner
mounted on top of the vehicle. These show the relative consistency of the localization
more clearly (Figure 4.4). It can be seen that the SC-EKF produces a sharper map with
straighter lines, e. g., at the side of the building. This shows it provides better (relative)
information, especially about the orientation of the vehicle, which is critical for producing
consistent maps.

4.3.3 Comparison of robustness against sensor failure

Another important criterion for a good localization �lter is robustness to sensor degradation
or failure. Especially GNSS sensors are prone to temporary failures due to occlusion by,
e. g., buildings or trees. To compare the robustness of the two �lters each �lter is run
two times, once with the full dataset and once with a period of the GNSS measurements
removed. The xy-distance and yaw-di�erence between the two runs is shown in �gure 4.5.

Up until the sensor failure the two runs of course lead to the same result. During the
failure both �lters provide similar results regarding xy. The SC-EKF is however more stable

21



4 3D Filter

(a) SC-EKF (b) plain EKF

(c) SC-EKF detail (d) plain EKF detail

Figure 4.4: Comparison of maps generated from localization poses
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Figure 4.5: Comparison of robustness against sensor failure. The duration of the outage is
marked in gray.

in the yaw angle, which would be expected as the SC-EKF is able to use the rotational
information of the odometry.

After the sensor failure for both �lters the di�erences become very small again. For the
SC-EKF it takes a bit longer, which might be caused by the fact that the uncertainty in the
position does not grow as much as for the EKF, thus the arriving GNSS measuremens do
not have such a strong in�uence. But since both �lters are compared to themselves and no
real reference is available no certain statement can be made about which �lter is more
accurate.
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5 Conclusion

Stochastic cloning is interesting especially in combination with an absolute sensor for
position like GNSS as this allows to refrain from using complex SLAM solutions without
steadily increasing localization error. For this reason the proposed method of using absolute
sensors in combination with stochastic cloning is very relevant.

In Chapter 3 it was shown that stochastic cloning provides an advantage over approximate
solutions. Chapter 4 showed that the method also works for a system of realistic complexity.

Linearization errors are especially relevant with stochastic cloning. It could furthermore
be analyzed whether an iterated EKF provides an advantage here.
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