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Optical Computing for Light Transport Matrix
Methods

Anton Schirg

Abstract—This paper explains the idea of optical computing
on the light transport matrix. It shows how a simple algorithm
can be transfered into the optical domain. Besides, it deals with a
more complex algorithm for separating direct and indirect light
transport, which works by altering the light transport of epipolar
and non-epipolar light paths in a camera projector system using
high refresh rate masks in front of camera and projector. This
allows obtaining images containing only the indirect component
of light transport (i.e. light rays that have been reflected multiple
times before reaching the camera) by blocking all epipolar
light transport. Using a more complex construction of masks,
images whose indirect contribution is not dependent on the
projected pattern can be captured. This is interesting for 3d
reconstruction by structured light images. Finally this paper will
discuss a compressed sensing technique for 3d reconstruction of
fast moving scenes.

I. INTRODUCTION

For a camera projector system (Figure 1) the light transport
matrix contains the contribution of any projector pixel to any
camera pixel.
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Fig. 1. Camera Projector System

For example, by its definition it can be used to calculate
the image i = Tl the camera would observe if the scene
was illuminated with the projector image l. Of course the
light transport matrix has to be known for this computation.
As shown further below, by manipulating the light transport
matrix direct light transport can be removed and an indirect
only image can be calculated.

But in practice most often it is not possible to directly obtain
the light transport matrix as it would take a long time and
consume a lot of memory. For a camera and projector both
having a resolution of 106 pixels at 30 frames per second
this would take more than 9 hours and consume 1 terabyte of
memory assuming 8 bits per pixel.

One can avoid having to obtain the transport matrix by
performing calculations in the optical domain. For example,
by definition of the light transport matrix, multiplying a vector
to the right side of the matrix is equivalent to projecting the
corresponding image onto the scene and capturing an image
(illuminate and capture operation).

There exist methods using optical calculations to obtain an
approximation of the light transport matrix sufficient for many
applications [1].

Other algorithms, like the one discussed in this paper, can
do all calculations in the optical domain.

This paper is structured as follows: Section 2 demonstrates
the conversion of a simple algorithm into the optical domain
on the example of power iteration. Section 3.A covers the
separation of direct and indirect light transport using high
refresh rate masks. In section 3.B this paper will discuss 3D
reconstruction as an application of indirect invariant imaging.

II. OPTICAL POWER ITERATION

Power iteration is a simple algorithm (Alg. 1) to find the
largest eigenvector v of a matrix.

Input: Matrix M
Result: largest eigenvector v of M
l = random vector;
for i = 1 to n do

l = Ml;
normalize l;

end
v = l;
return v;

Algorithm 1: Power iteration

This algorithm can easily be transferred into the optical do-
main by replacing the matrix multiplication with an illuminate
and capture operation (Alg. 2).

Once the largest eigenvector has been obtained the next
one can be computed by finding the largest eigenvector of
the matrix M − λI, where I is the identity matrix and λ the
eigenvalue corresponding to the largest eigenvector.

Multiple eigenvectors can be used to retrieve a low rank
approximation of the light transport matrix.

But as the convergence properties of power iteration may
be arbitrarily bad for ill-formed matrices and power iteration
computes only one eigenvector at a time, [1] looks at more
efficient algorithms of similar design.
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Input: Scene S
Result: largest eigenvector v of the light transport

matrix of S
l = random vector;
for i = 1 to n do

project l onto S;
l = image of S;
normalize l;

end
v = l;
return v;

Algorithm 2: Optical power iteration

III. SEPARATION OF DIRECT AND INDIRECT LIGHT

By manipulating the flow of light through a scene one can
achieve interesting results. In [2] the authors show how light
transport can be manipulated so that only certain light paths
contribute to the final image.

A. Operating Principle

For a stereo camera projector system for every point on one
image exists an epipolar line on the other image on which the
point of direct light transport must lie (Figure 2). Thus light
paths can be classified into epipolar and non-epipolar paths.
All direct light transport is epipolar, while most of the indirect
light transport is non-epipolar.

optical center
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Fig. 2. Epipolar light transport

To manipulate the flow of light two DMD masks (digital
micromirror device) operating at a frequency much higher than
the camera frame rate are used, mask q in the projector and
mask m in front of the camera (Figure 3).

DMD masks are used as they can reach much higher refresh
rates than LCDs. As a downside they can only represent binary
masks which had to be taken into account in the choice of
masks.

For the following considerations we imagine the images and
masks to be transformed in such a way that epipolar lines are
horizontal and as such occupy a continuous section in the
vectors (Figure 4).

qm
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Fig. 3. Camera Projector System with Mask

Fig. 4. Transport matrix if epipolar lines are horizontal (From [2])

Fig. 5. Probing matrices (From [2])
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1) Indirect Only: An indirect only image (Figure 6) can
be obtained by removing all epipolar light transport. This will
also remove some of the indirect light but the contribution of
this light would have been negligible.

Fig. 6. Indirect only images. Top left: In the image of a hand vein patterns are
visible. Other images: Caustics in glasses and a mug are emphasized. (From
[2])

Letting through only one epipolar line on the projector
and all other lines on the camera will remove all direct light
transport.

This can also be thought of as manipulating the light
transport matrix by changing the influence of different light
paths, i.e. weight single entries in the transport matrix by
entrywise product with a so called “probing matrix” Π:

i = (Π ◦T)1 , (1)

where i is the captured image, 1 is a vector of ones and ◦
denotes the entrywise product.

The resulting image from the camera projector system is

i = m ◦ (Tq) , (2)

where m and q are the masks in front of camera and projector.
This is equal to equation (1) for Π = mqᵀ.

Such a decomposition of Π is possible only for very specific
matrices. But as the masks operate at a higher frequency than
the camera we can switch between T masks per frame. The
resulting image will be

i =

T∑
t=1

mt ◦ (Tqt) . (3)

This is equal to equation (1) for Π =
∑T

t=1 mtq
ᵀ
t .

For Π = Π3 (Figure 5 indirect-only) this is satisfied for the
case mentioned above where one epipolar line is activated at
a time.

However this method has poor light efficiency as only 1/T
of the projected light is let through.

To improve this a randomized approach can be used: half
of all lines are activated in the projector and the rows corre-
sponding to the other half in the camera, i.e. qt is a sample
of

q = {each epipolar line is turned on with probability 0.5}
(4)

and mt = qt, where q denotes the entrywise not operation on
the binary vector q.

Fig. 7. Randomized indirect-only mask. Direct light transport (gray) is always
blocked, while nearly 1

4
of indirect light (red) is let through.

To further support this approach the authors of [3] use the
vectorization scheme of T shown above (Figure 4):

Following (3) a single row of the image is

ie =
1

T

T∑
t=1

E∑
f=1

qt,e ◦ (Tefqt,f ) . (5)

Thanks to the vectorization scheme this can be split into
epipolar and non-epipolar terms.

ie =
1

T

T∑
t=1

qt,e ◦ (Teeqt,e) +

E∑
f=1,f 6=e

qt,e ◦ (Tefqt,f )


(6)

qt,e represents a single epipolar line so by the definition of
qt in (4) either qt,e or qt,e is a zero vector and thus the first
term is zero.

ie =
1

T

T∑
t=1

E∑
f=1,f 6=e

qt,e ◦ (Tefqt,f ) (7)

For T →∞ this corresponds to the expected value

E [ie] = E [
E∑

f=1,f 6=e

qe ◦ (Tefqf )] . (8)

And this by linearity of the expected value and by the fact
that qe and qf are independent results in

E [ie] = 0.25

E∑
f=1,f 6=e

Tef1 (9)

E [i] = 0.25
(
Π3 ◦T

)
1 . (10)

So we see that the expected value of the image is equal to
the exact method but with a light efficiency of 1/4.
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2) Epipolar Only: For the epipolar only probing matrix
no short decomposition exists [2]. Instead one can take a
conventional and a non-epipolar image in a row and subtract
the two to obtain an epipolar only image.

3) Indirect-Invariant: Instead of an epipolar only image
for some applications — like the one explained below — an
indirect-invariant image (i.e. where the indirect contribution is
not dependent on the projected pattern) is sufficient. This can
be obtained from only one frame. Mask m is again chosen as
a sample of

m = {each epipolar line is on with probability 0.5} . (11)

Mask q is chosen as follows:

qt = mt ◦ rt +mt ◦ rt (12)

where rt is a sample of

r = {pixel p on epipolar line e is 1 with probability pe[p]}
(13)

where pe is the e-th epipolar line in the projected image.

In [3] the authors show that this is sensible similar to indirect
only:

Following (3) a single row of the image is given by

ie =
1

T

T∑
t=1

E∑
f=1

mt,e ◦ (Tef (mt,f ◦ rt,f +mt,f ◦ rt,f )) .

(14)
Thanks to the vectorization scheme this can be split into
epipolar and non-epipolar terms.

ie =
1

T

T∑
t=1

(mt,e ◦ (Tee(mt,f ◦ rt,f ))+

mt,e ◦ (Tee(mt,f ◦ rt,f ))+ (15)
E∑

f=1,f 6=e

mt,e ◦ (Tef (mt,f ◦ rt,f +mt,f ◦ rt,f )))

mt,e represents a single epipolar line so by the definition of
mt in (11) either mt,e or mt,e is a zero vector and thus the
second term is zero.

ie =
1

T

T∑
t=1

(mt,e ◦ (Tee(mt,f ◦ rt,f ))+ (16)

E∑
f=1,f 6=e

mt,e ◦ (Tef (mt,f ◦ rt,f +mt,f ◦ rt,f )))

For T →∞ this corresponds to the expected value

E [ie] = E [me ◦ (Tee(me ◦ re))+ (17)
E∑

f=1,f 6=e

me ◦ (Tef (me ◦ re +me ◦ re))] .

And this since me is either 1 or 0 and by the fact that me

is independent from mf , re and rf and since by its definition
(13) E [re] = pe results in

E [ie] =0.5TeeE [re] + (18)

0.5

E∑
f=1,f 6=e

TefE [me ◦ re +me ◦ re] .

=0.5Teepe + (19)

0.5

E∑
f=1,f 6=e

(
1

2
Tefpe +

1

2
Tef (1− pe)) .

=0.5Teepe + (20)

0.25

E∑
f=1,f 6=e

Tef1 .

E [i] = 0.25(Π2(2p) ◦T)1 . (21)

B. Application - Depth and Albedo Reconstruction

An application of indirect-invariant imaging shown in [2]
is depth and albedo reconstruction in scenes with specular
reflections as these pose a problem when using conventional
imaging (Figure 8). One can see that the reconstruction is
greatly improved when using indirect-invariant imaging (Fig-
ure 9).

Fig. 8. Comparison of conventional and indirect-invariant imaging. Note that
in the indirect-invariant image the projected pattern is not reflected from the
mirror. (From [2])

The working principle of the reconstruction is described in
[5, Section 4.1]. Multiple sine waves oriented along the epipo-
lar lines are projected onto the scene. Using the arctangent of
the ratio of these waves at a specific location the phase can
be reconstructed and from it the depth at this location. As
the phase wraps at −π/π multiple frequencies are projected to
obtain absolute phase. In this case 3 frequencies and 3 phase
offsets were used. This results in 9 images total.
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Fig. 9. Comparison of the 3D reconstruction result using conventional and
indirect-invariant imaging. (From [2])

For fast moving scenes taking multiple images per recon-
struction is not possible. Instead compressed sensing tech-
niques can be used to interleave S structured light patterns
into a single image [4]. In this case S = 6 (2 frequencies, 3
phase offsets).

The camera pixels are partitioned into S sets, bs are vectors
indicating the set membership of each pixel. These member-
ship vectors are used as masks cycled though in front of the
camera synchronously to switching the projected pattern.

This results in each pixel containing only contributions from
one of the projected patterns. The missing pixels are restored
by solving the linear system

‖
S∑

s=1

bs ◦ is − i‖ ≤ ε (22)

for is for s = 1 . . . S. This system is naturally underdefined
as one image is used to obtain S images.

To be able to solve the system anyway, spacial coherence is
exploited by using JPEG2000 wavelets as basis W and finding
a sparse solution by minimizing

‖Wᵀ[i1 . . . iS ]‖ . (23)

using a non-linear optimizer [6].

IV. SUMMARY AND OUTLOOK

We have seen the idea of optical computing on the light
transport matrix and how a simple algorithm can be trans-
fered into the optical domain. As a more complex algorithm
we looked at separation of direct and indirect light. A key
observation is that indirect light transport is dominated by non-
epipolar paths and direct light transport contains only epipolar
paths. This allows obtaining indirect-only images by blocking
all epipolar light transport. Interestingly direct-only imaging

can not be achieved in a similar fashion. But using a more
complex construction of masks one can produce images whose
indirect contribution is not dependent on the projected pattern,
which is interesting for 3d reconstruction by structured light
images. Finally we saw how compressed sensing techniques
can be used to take multiple of these structured light images
in a single shot which is useful for 3d reconstruction of fast
moving scenes.

Another interesting topic that follows on from the above
might be how the compressed sensing for one shot 3d recon-
struction can be optimized as it requires heavy post-processing.
Maybe new sensor technologies like multi-bucket pixels [7]
can remove the need for post processing.
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